EE 435

Lecture 38

Data Converters
 - Noise
 - Statistical Characterization

Cyclic (Algorithmic) ADC

- Small amount of hardware
- Effective thru-put decreases

Intermolating ADC

$<00000>$

- Amplifiers are finite-gain saturating
- Amplifiers need not be accurate or linear
- Shown for 4-bit
- Same common-mode input on comparators
$<00000\rangle$. Clocked comparators usually regenerative
- Reduces Offset Requirements for Comparators

SAR ADC

- DAC Controller may be simply U/D counter
- Binary search controlled by Finite State Machine is faster
- SAR ADC will have no missing codes if DAC is monotone
- Not very fast but can be small
- Any DAC can be used
- Single comparator !

Time Interleaved SAR ADC

Time interleaving increases effective conversion rate by factor of m

Actual Catalog Data Converter Parts

- Often (not always) digital interface with data converter is serial
- Significantly Reduces pin count
- Interfaces usually follow standard protocols
- Challenge in data converter design almost always in the data converter itself
- Multiple channels often available and these usually use single converter and MUX

Common Application

Want digital representation of analog input at a "distant" location
Distance could be a few cm or thousands of miles
Transmitting clock would dramatically increase communication overhead and provide no additional information

Keeping phase of clock aligned with data would be extremely difficult even for short distances

Data is usually encoded and at receiver end both clock and data are recovered (CDR)
Digital signals themselves degrade when passing through channel
Bit overhead is significant

Noise in ADCs and DACs

Noise in electronic devices and components introduce noise in electronic systems

Noise is of major concern in ADCs, DADs, and Op Amps

Beyond the scope of this course to go into lots of details about effects of device noise in these components but will provide a brief introduction

Devices that contribute noise :

Capacitors and Inductors are noiseless:

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?

Noise in resistors:

Noise can be characterized by either $V_{\mathrm{n}}(\mathrm{t})$ (time domain) or the spectral density S (frequency domain)

Noise spectral density of $v_{\mathrm{n}}(\mathrm{t})$ at all frequencies for a resistor
$S=4 k T R$
k: Boltzmann's Constant
T: Temperature in Kelvin
$\mathrm{k}=1.38064852 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
At $300 \mathrm{~K}, \mathrm{kT}=4.14 \times 10^{-21}$

This is termed white noise because S is independent of f !

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs?

Noise in linear circuits:

$$
v_{\mathrm{n}}(\mathrm{t}) \Longleftrightarrow \mathrm{S}_{(\mathrm{f})}
$$

Typically interested in RMS value of the noise voltage

$$
\boldsymbol{v}_{\mathrm{RMS}}
$$

Time domain:

$$
\boldsymbol{V}_{\mathrm{vas}}=\sqrt{\lim _{\ln \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{\mathrm{t}=0}^{\mathrm{T}} \boldsymbol{v}_{n}^{2}(\mathrm{t}) \mathrm{dt}}
$$

Difficult to obtain directly !

Frequency domain:

$$
\tilde{V}_{\text {Rus }}=\sqrt{\int_{f=0}^{\infty} S_{(f)} \text { df }}
$$

It can be shown that:

$$
\tilde{\boldsymbol{v}}_{\text {uss }}=\boldsymbol{v}_{\text {uss }}
$$

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?

Noise in linear circuits:

Due to any noise voltage source:

$$
\begin{aligned}
& S_{\text {voor }}=S_{r_{n}}\left|T_{n}(j \omega)\right|^{2} \\
& V_{\text {outruss }}=\sqrt{\int_{f=0}^{\infty} S_{\text {voor }} \mathrm{df}}
\end{aligned}
$$

Thus:

$$
\boldsymbol{V}_{o r_{\text {Im }}}=\sqrt{\int_{i=0}^{\infty} S_{w a x} \mathrm{df}}=\sqrt{\int_{f=0}^{\infty} S_{v i}\left|T_{n}(j \omega)\right|^{2} \mathrm{df}}
$$

Example: First-Order RC Network

Noise transfer function:

$$
\mathrm{T}_{0}(s)=\frac{1}{1+\mathrm{RCs}}
$$

$$
S_{\text {voor }}=4 \mathrm{kTR}\left(\frac{1}{1+(\mathrm{RC} \omega)^{2}}\right)
$$

$$
\boldsymbol{V}_{\max }=\sqrt{\int_{i=0}^{\infty} S_{\text {vax }} \mathrm{df}}=\sqrt{\int_{f=0}^{\infty} \frac{4 \mathrm{kTR}}{1+\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}} \mathrm{df}}
$$

Example: First-Order RC Network

$$
v_{v e}=\sqrt{\int_{i=0} S_{m \mathrm{df}}}=\sqrt{\int_{f=0}^{\infty} \frac{4 \mathrm{kTR}}{1+\omega^{2} \mathrm{R}^{2} \mathrm{C}^{2}} \mathrm{df}}
$$

From a standard change of variable with a trig identity, it follows that

$$
\boldsymbol{V}_{v a u}=\sqrt{\int_{i=0}^{\infty} S_{v a r} \text { df }}=\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}
$$

- The continuous-time noise voltage has an RMS value that is independent of R
- Noise contributed by the resistor is dependent only upon the capacitor value C
- This is often referred to at kT / C noise and it can be decreased at a given T only by increasing C

"kT/C" Noise at T=300K

"kT/C" Noise at T=300K

Sample and Hold Circuits

Slightly more complicated S/H used for input S/H

This simple structure used in some applications

Actually a Track and Hold Circuit
Noise characteristics of S/H similar to that of these simple samplers

Basic S/H circuit

Sample and Hold Circuits

During Track Mode

When switch is opened to take sample, noise on C is captured on C (superimposed on signal)

This noise becomes input noise to the ADC

Recall noise in resistor modeled as noise voltage source in series with R

Sample and Hold Circuits

Track mode

Hold mode

If switch opens fast, noise on C due to R is captured as $v_{n}(k T)$

Sample and Hold Circuits

T is the period of the sampler

$v_{\mathrm{n}}(\mathrm{mT})$ is a discrete-time sequence obtained by sampling continuous-time noise waveform

RMS value of noise input to pipelined ADC is that of the discrete time noise sequence

Sample and Hold Circuits

Define the RMS noise of a discrete time noise sequence as

$$
\hat{\boldsymbol{V}}_{\mathrm{mss}}=E\left(\sqrt{\lim \left(\frac{1}{N} \sum_{\mathrm{m}}^{\sum} \boldsymbol{V}^{2}(\mathrm{mT})\right)}\right)
$$

Thus:

Sample and Hold Circuits

$v_{\mathrm{n}}(\mathrm{mT})$ for each m is a random variable with some distribution function
This distribution function is independent of m (i.e. the variables are identically distributed)
Assume μ_{n} is the mean and σ_{n} is the standard deviation of this random variable
What is the relationship, if any, between $v_{\text {wo }}$ and $\hat{v}_{\text {uex }}$

Theorem 1 If $\mathcal{V}(\mathrm{t})$ is a continuous-time zero-mean noise source and $\langle\mathcal{V}(\mathrm{kT})\rangle$ is a sampled version of $\boldsymbol{v}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as $\boldsymbol{V}_{\text {Rus }}=\hat{V}_{\text {vus }}$

Theorem 2 If $v(\mathrm{t})$ is a continuous-time zero-mean noise signal and $<\boldsymbol{V}(\mathrm{kT})>$ is a sampled version of $\boldsymbol{v}(\mathrm{t})$ sampled at times $\mathrm{T}, 2 \mathrm{~T}, \ldots$. then the standard deviation of the random variable $v(\mathrm{kT})$, denoted as σ_{v}
satisfies the expression $\sigma_{V}=V_{\text {RIIS }}=\hat{V}_{\text {RII }}$

From Theorem 1 we obtain the RMS value of the switched capacitor sampler

Sample and Hold Circuits

RMS noise at output of basic SC S/H is independent of R but dependent upon C

Statistical Analysis of Data Converters

Integral Nonlinearity (ADC)

Nonideal ADC

Break-point INL definition

$$
\begin{gathered}
\mathrm{NL}_{\mathrm{k}}=\frac{x_{\mathrm{Tk}}-x_{\mathrm{FTk}}}{x_{\mathrm{LSB}}} \quad 1 \leq \mathrm{k} \leq \mathrm{N}-2 \\
\mathrm{INL}=\max _{2 \leq \mathrm{k} \leq \mathrm{N}-2}\left\{\left|\mathrm{NL}_{\mathrm{k}}\right|\right\}
\end{gathered}
$$

- Component dimensions and model parameters of all devices in a data converter are actually random variables at the design stage!
- At design stage, INL characterized by standard deviation of many random variables
- Closed-form expressions for INL almost never exist because PDF of order statistics of correlated random variables is extremely complicated
- Simulation of INL very time consuming if n is very large (large sample size required to establish reasonable level of confidence)
-Model parameters become random variables
-Process parameters affect multiple model parameters causing model parameter correlation
-Simulation times can become very large

Nonideal ADC
Break-point INL definition

$$
\begin{gathered}
\mathrm{NL}_{\mathrm{k}}=\frac{x_{\mathrm{Tk}}-x_{\mathrm{FTk}}}{x_{\mathrm{LSB}}} \quad 1 \leq \mathrm{k} \leq \mathrm{N}-2 \\
\mathrm{INL}=\max _{2 \leq \mathrm{k} \leq \mathrm{N}-2}\left\{\left|\mathrm{NL}_{\mathrm{k}}\right|\right\}
\end{gathered}
$$

- INL can be readily measured in laboratory but often dominates test costs because of number of measurements needed when n is large
- Expected value of $\mathrm{INL}_{\mathrm{k}}$ at $\mathrm{k}=(\mathrm{N}-1) / 2$ is largest for many architectures
- INL of $\frac{x_{L S B}}{2}$ often considered acceptable (this is the ideal value of the continuous-input INL definition though many high-speed ADCs and some lower-speed structures will have an INL that exceeds this)
- Major effort in ADC design is in obtaining an INL acceptable yield !
- Yield often strongly dependent upon matching of random variables !

Characteristics of Data Converters Dominantly Depend Upon Random Variables

- Static characteristics
- Resolution
- Least Significant Bit (LSB)

Offset and Gain Errors

- Absolute Accuracy

Relative Accuracy

- Integral Nonlinearity (INL)

Differential Nonlinearity (DNL)
Monotonicity (DAC)
Missing Codes (ADC)

- Quantization Noise

Low-f Spurious Free Dynamic Range (SFDR)
Low-f Total Harmonic Distortion (THD)
Effective Number of Bits (ENOB)

- Power Dissipation

Characteristics of Data Converters
 Dominantly Depend Upon Random Variables

- Dynamic characteristics
- Conversion Time or Conversion Rate (ADC)
- Settling time or Clock Rate (DAC)
- Sampling Time Uncertainty (aperture uncertainty or aperture jitter)
- Dynamic Range
- Spurious Free Dynamic Range (SFDR)
- Total Harmonic Distortion (THD)
- Signal to Noise Ratio (SNR)
- Signal to Noise and Distortion Ratio (SNDR)
- Sparkle Characteristics
- Effective Number of Bits (ENOB)

Methods of Characterizing how Random Variables Affect Performance

- Analytical Statistical Formulation and Analysis
- MATLAB Simulations (often using Monte-Carlo Analysis)
- Spectre/Spice Monte-Carlo Simulations
- Ignore Effects of Random Effects

How important is statistical characterization of data converters?

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC
Assume R -string is ideal, $\mathrm{V}_{\text {REF }}=1 \mathrm{~V}$ and V_{OS} for each comparator must be at most $+/-1 / 2$ LSB

Why this assumption?

Note: this is a much different performance requirement than requiring that $\mathrm{INL}<1 / 2$ LSB and would not be part of a standard specification but we will see that it is analytical tractable and gives an appreciation for the importance of statistical analysis
Case 1
Determine the yield if V_{OS} has a Gaussian distribution (Normal) with zero mean and a standard deviation of 5 mV

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC

Assume R -string is ideal, $\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$ and V_{OS} for each comparator must be at most $+/-1 / 2$ LSB

Case 1

Determine the yield if V_{Os} has a Gaussian distribution (Normal) with zero mean and a standard deviation of 5 mV

$$
1 / 2 \mathrm{LSB}=1 \mathrm{~V} /\left(2^{(7+1)}\right)=3.9 \mathrm{mV}
$$

The probability that a single comparator meets the V_{OS} requirement is given by

$$
\mathrm{P}_{\mathrm{COMP}}=\int_{-3.9 m V}^{3.9 m V} \mathrm{f}_{\mathrm{VOS}} \mathrm{dV}
$$

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC Assume $\mathrm{V}_{\text {OS }}$ is zero-mean gaussian

Case $1 \quad \sigma_{\text {vos }}=5 \mathrm{mV}$

$$
\mathrm{P}_{\mathrm{COMP}}=\int_{-3.9 m V}^{3.9 m V} \mathrm{f}_{\mathrm{VOS}} \mathrm{dV}
$$

Define $X_{N}=V_{\text {OS }} / \sigma \quad$ Since $\mu=0$, this will make $X_{N}: N(0,1)$

$$
P_{\text {COMP }}=\int_{-X_{N}}^{X_{N}} f_{N} d x \quad f_{N} \text { and } F_{N} \text { are pdf and cdr of } N(0,1) R V
$$

$$
\mathrm{X}_{\mathrm{N}}=3.9 \mathrm{mV} / 5 \mathrm{mV}=0.78
$$

$$
P_{\text {COMP }}=\int_{-0.78}^{0.78} f_{N} \mathrm{dx}
$$

$$
\mathrm{P}_{\mathrm{COMP}}=2 \bullet \mathrm{~F}_{\mathrm{N}}(0.78)-1
$$

Table of CDF for $\mathrm{N}(0,1)$ Random Variables

${ }_{z}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486		0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.782	0.7852
	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078		0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.920097	$0.9{ }^{2} 0358$	$0.9^{2} 0613$	$0.9{ }^{2} 0863$	$0.9{ }^{2} 1106$	$0.9{ }^{2} 1344$	$0.9{ }^{2} 1576$
2.4	$0.9{ }^{2} 1802$	$0.9{ }^{2} 2024$	$0.9{ }^{2} 2240$	0.922451	$0.9^{2} 2656$	$0.9^{2} 2857$	$0.9^{2} 3053$	0.923244	$0.9{ }^{2} 3431$	$0.9^{2} 3613$
2.5	$0.9{ }^{2} 3790$	$0.9{ }^{2} 3963$	$0.9{ }^{2} 4132$	0.924297	$0.9^{2} 4457$	$0.9^{2} 4614$	$0.9{ }^{2} 4766$	0.924915	$0.9^{2} 5060$	$0.9{ }^{2} 5201$
2.6	0.925339	$0.9{ }^{2} 5473$	$0.9^{2} 5604$	0.925731	$0.9^{2} 5855$	$0.9^{2} 5975$	$0.9^{2} 6093$	$0.9^{2} 6207$	$0.9{ }^{2} 6319$	$0.9{ }^{2} 6427$
2.7	0.926533	$0.9{ }^{2} 6636$	$0.9{ }^{2} 6736$	0.926833	$0.9^{2} 6928$	$0.9^{27} 7020$	$0.9^{2} 7110$	0.987197	$0.9^{2} 7282$	$0.9^{27} 7365$
2.8	0.987445	$0.9{ }^{2} 7523$	$0.9{ }^{2} 7599$	0.927673	$0.9^{2} 7744$	0.9^{27814}	$0.9^{2} 7882$	0.987948	$0.9^{2} 8012$	$0.9{ }^{2} 8074$
2.9	0.928134	$0.9{ }^{28193}$	$0.9^{2} 8250$	0.928305	$0.9^{2} 8359$	$0.9^{2} 8411$	$0.9^{2} 8462$	0.928511	$0.9^{2} 8559$	$0.9^{2} 8605$
3.0	$0.9{ }^{2} 8650$	$0.9^{2} 8694$	$0.9{ }^{2} 8736$	0.928777	$0.9^{2} 8817$	$0.9^{2} 8856$	$0.9{ }^{2} 8893$	0.928930	$0.9^{2} 8965$	$0.9^{2} 8999$

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC

$$
P_{\text {COMP }}=2 \bullet F_{N}(0.78)-1=2 \bullet .7823-1=0.565
$$

Each comparator has 56.5% yield

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC
Case $1 \quad \sigma_{\text {vos }}=5 \mathrm{mV}$

$$
P_{\text {COMP }}=0.565
$$

Since all comparators must be good, the ADC yield is

$$
\begin{aligned}
& Y_{\mathrm{ADC}}=\left(\mathrm{P}_{\mathrm{COMP}}\right)^{127}=(0.565)^{127} \\
& \mathrm{Y}_{\mathrm{ADC}}=3.2 \cdot 10^{-32}
\end{aligned}
$$

This yield is essentially 0 and a standard deviation of 5 mV is even not trivial to obtain with MOS comparators !

The effects of statistical variation can have dramatic effects on yield of data converters !

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC

Case $1 \quad \sigma_{\text {vos }}=5 \mathrm{mV}$
Since all comparators must be good, the ADC yield is

$$
\mathrm{Y}_{\mathrm{ADC}}=3.2 \cdot 10^{-32}
$$

Note: The specification in this example that requires no comparator has an offset voltage of larger than 0.5LSB may not be a good performance specification as the FLASH ADC may actually perform reasonably well even if some comparators have an offset that is larger than 0.5 LSB . A more useful requirement might be that there be no bubbles in the thermometer code output. Certainly if all comparators have an offset that is at most 0.5 LSB , there will be no bubbles in the output code attributable to comparator offset but a modestly weaker constraint can also guarantee there are no bubbles. With the 0.5LSB assumption, a specification that was dependent upon 127 uncorrelated random variables was obtained which made the analysis quite easy. A "no bubble" specification could be approximated by stating that the maximum of the $127 \mathrm{~V}_{\mathrm{OSk}}-\mathrm{V}_{\mathrm{OSk}-1}$ must be less than $\mathrm{V}_{\mathrm{LSB}}$. This becomes an order statistic of 127 Gaussian random variables which is analytically intractable.

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC

Case 2 Repeat the previous example if $\sigma_{\mathrm{vos}}=1 \mathrm{mV}$ Assume R-string is ideal, $\mathrm{V}_{\text {REF }}=1 \mathrm{~V}$ and $\mathrm{V}_{\text {OS }}$ for each comparator must be at most $+/-1 / 2$ LSB

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{COMP}}=\int_{-3.9 m V}^{3.9 \mathrm{mV}} \mathrm{f}_{\mathrm{VOS}} \mathrm{dV} \longrightarrow \mathrm{X}_{N}=3.9 \mathrm{mV} / 1 \mathrm{mV}=3.9 \\
& \mathrm{P}_{\mathrm{COMP}}=\int_{-3.9}^{3.9} \mathrm{f}_{\mathrm{N}} \mathrm{dx} \quad \mathrm{P}_{\mathrm{COMP}}=2 \bullet \digamma_{\mathrm{N}}(3.9)-1=2 \bullet 0.999952-1=0.999904 \\
& \mathrm{Y}_{\mathrm{ADC}}=\left(\mathrm{P}_{\mathrm{COMP}}\right)^{127}=(0.999904)^{127} \\
& \mathrm{Y}_{\mathrm{ADC}}=0.988
\end{aligned}
$$

This modest change in the offset voltage has increased the yield to 98.8%

How important is statistical analysis?

Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8-bit ADC?

$$
\mathrm{Y}_{\mathrm{ADC}}=?
$$

How important is statistical analysis?

Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8-bit ADC?

Since one additional bit has been added, $\mathrm{V}_{\text {LSB }}$ will decrease
From 7.8 mV to 3.9 mV . Thus $1 / 2 \mathrm{LSB}$ will be reduced to 1.95 mV

$$
\mathrm{P}_{\mathrm{COMP}}=\int_{-1.95 m V}^{1.95 m V} \mathrm{f}_{\mathrm{VOS}} \mathrm{dV}
$$

With the same $\sigma_{\mathrm{vos}}=1 \mathrm{mV}$,

$$
X_{N}=1.95 \mathrm{mV} / 1 \mathrm{mV}=1.95
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{COMP}}=\int_{-1.95}^{1.95} f_{\mathrm{N}} \mathrm{dx} \quad P_{\mathrm{COMP}}=2 \bullet F_{\mathrm{N}}(1.95)-1=2 \cdot 0.97441-1=0.9488 \\
& \mathrm{Y}_{\mathrm{ADC}}=\left(\mathrm{P}_{\mathrm{COMP}}\right)^{255}=(0.9488)^{255} \\
& \mathrm{Y}_{\mathrm{ADC}}=1.52 \cdot 10^{-6}
\end{aligned}
$$

This seemingly simple extension of a circuit with a very high yield has essentially no yield!

How important is statistical analysis?

Example: What will be the yield if two of the 7-bit FLASH ADCs with yields of 98.8% are combined to obtain an 8-bit ADC?

$Y_{A D C}=98.8 \%$

$$
\mathrm{Y}_{\mathrm{ADC}}=1.52 \cdot 10^{-6}
$$

- The onset of statistically-induced yield loss can be abrupt
- Intuition is not an acceptable substitute to statistical analysis
- Without statistical analysis/simulation there is a high probability that a data converter will be substantially over designed or under designed and neither is acceptable

Statistical Modeling of Random Variations

For the effects of local random variations of a parameter X, generally

$$
\sigma_{X} \propto \frac{\mathrm{~A}_{0}}{\sqrt{\mathrm{~A}_{\mathrm{C}}}}
$$

where A_{C} is the area of the matching critical components and A_{0} is a process parameter

Importance of statistical analysis - example

What changes in area would be needed to decrease σ_{vos} from 5 mV to 1 mV ?

$$
\sigma_{X} \propto \frac{\mathrm{~A}_{0}}{\sqrt{\mathrm{~A}_{\mathrm{C}}}}
$$

$$
\left.\begin{array}{l}
\sigma_{\mathrm{X}_{5}}=\theta \frac{\mathrm{A}_{0}}{\sqrt{\mathrm{~A}_{\mathrm{C}_{5}}}} \\
\sigma_{\mathrm{X}_{1}}=\theta \frac{\mathrm{A}_{0}}{\sqrt{\mathrm{~A}_{\mathrm{C}_{1}}}}
\end{array}\right\}
$$

$$
\frac{\sigma_{\mathrm{X}_{5}}}{\sigma_{\mathrm{X}_{1}}}=\frac{\sqrt{\mathrm{A}_{\mathrm{C}_{1}}}}{\sqrt{\mathrm{~A}_{\mathrm{C}_{5}}}}=5
$$

$$
\mathrm{A}_{\mathrm{C}_{1}}=25 \mathrm{~A}_{\mathrm{C}_{5}}
$$

Equivalent Number of Bits (ENOB)

- Often the performance of an n-bit commercial data converter is not commensurate with that of an ideal n-bit data converter but more like that of an n-k bit data converter
- The equivalent number of bits (ENOB) is often used to characterize the actual level of performance
- Different ENOB definitions depending upon which characterization parameter is of interest (e.g. INL, SFDR, SNR, ...)

INL-based ENOB

(Review from Lecture 27 Spring 2023)

Consider initially the continuous INL definition for an ADC where the INL of an ideal ADC is $X_{\text {LSB }} / 2$

Assume

$$
\mathrm{INL}=v X_{\mathrm{LSBR}}=v \frac{X_{R E F}}{2^{n_{R}}}
$$

where $X_{\text {LSER }}$ is the LSB based upon the defined resolution, n_{R}
Define the equivalent LSB by $\quad X_{\text {LSBE }}=\frac{X_{R E F}}{2^{n_{E Q}}}$
Thus (substituting for $X_{\text {REF }}$ into INL expression):

$$
\mathrm{INL}=v \frac{2^{n_{E Q}}}{2^{n_{R}}} X_{\mathrm{LSBE}}=\left[v 2^{n_{E Q}+1-n_{R}}\right] \frac{X_{\mathrm{LSBE}}}{2}
$$

Since an ideal ADC has an INL of $X_{\text {LSB }} / 2$, Setting term in [] to 1, can solve for $n_{E Q}$ to obtain

$$
\mathrm{ENOB}=\mathrm{n}_{\mathrm{EQ}}=\log _{2}\left(\frac{1}{2 \theta}\right)=\mathrm{n}_{\mathrm{R}}-1-\log _{2}(v)
$$

where n_{R} is the defined resolution
(Review from Lecture 27 Spring 2023)

INL-based ENOB

ENOB $=n_{R}-1-\log _{2}(v)$
Consider an ADC with specified resolution of n_{R} and INL of v LSB

\boldsymbol{v}	ENOB
$1 / 2$	n_{R}
1	$\mathrm{n}_{\mathrm{R}}-1$
2	$\mathrm{n}_{\mathrm{R}}-2$
4	$\mathrm{n}_{\mathrm{R}}-3$
8	$\mathrm{n}_{\mathrm{R}}-4$
16	$\mathrm{n}_{\mathrm{R}}-5$

Though based upon the continuous-INL definition, often used to define ENOB from INL viewpoint

16-Bit, 200 MSPS/250 MSPS
 Analog-to-Digital Converter

Data Sheet

$\$ 120$ in 1000's
AD9467

FEATURES

75.5 dBFS SNR to 210 MHz at 250 MSPS

90 dBFS SFDR to $\mathbf{3 0 0} \mathbf{~ M H z}$ at $\mathbf{2 5 0}$ MSPS
SFDR at $170 \mathbf{M H z}$ at $\mathbf{2 5 0}$ MSPS
92 dBFS at $\mathbf{- 1} \mathrm{dBFS}$
100 dBFS at $\mathbf{- 2} \mathbf{~ d B F S}$
60 fs rms jitter
Excellent linearity at $\mathbf{2 5 0}$ MSPS
DNL $= \pm 0.5$ LSETypical
INL $= \pm 3.5$ LSB typical
2 V p-p to 2.5 V p-p (default) differential full-scale input (programmable)
Integrated input buffer
External reference support option
Clock duty cycle stabilizer
Output clock available

Serial port control

Built-in selectable digital test pattern generation
Selectable output data format
LVDS outputs (ANSI-644 compatible)
1.8 V and 3.3 V supply operation

APPLICATIONS

Multicarrier, multimode cellular receivers
Antenna array positioning
Power amplifier linearization
Broadband wireless

Radar

Infrared imaging
Communications instrumentation

FUNCTIONAL BLOCK DIAGRAM

ENOB $=n_{R}-1-\log _{2}(v)=16-1-1.85 \cong 13.15$

Is this close to 16 -bit performance?

A data clock output (DCO) for capturing data on the output is provided for signaling a new output bit.
The internal power-down feature supported via the SPI typically consumes less than 5 mW when disabled.
Optional features allow users to implement various selectable operating conditions, including input range, data format select, and output data test patterns.
The AD9467 is available in a Pb-free, 72-lead, LFCSP specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range.

Can we depend on this "13-bit" INL performance? SPECIFICATIONS

$\mathrm{AVDD} 1=1.8 \mathrm{~V}, \mathrm{AVDD} 2=3.3 \mathrm{~V}, \mathrm{AVDD} 3=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, specified maximum sampling rate, 2.5 V p-p differential input, 1.25 V internal reference, $\mathrm{AIN}=-1.0 \mathrm{dBFS}, \mathrm{DCS}$ on, default SPI settings, unless otherwise noted.

Table 1.

${ }^{1}$ See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed
${ }^{2}$ Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.

$$
\text { ENOB }=n_{R}-1-\log _{2}(v)=16-1-3.58 \cong 11.42
$$

From INL viewpoint, performance of marketed parts could be about 4.5 bits less than physical resolution but does have other attractive properties

AC SPECIFICATIONS

$\mathrm{AVDD1}=1.8 \mathrm{~V}, \mathrm{AVDD} 2=3.3 \mathrm{~V}, \mathrm{AVDD} 3=1.8 \mathrm{~V}, \mathrm{DRVDD}=1.8 \mathrm{~V}$, specified maximum sampling rate, 2.5 V p-p differential input,
1.25 V internal reference, $\mathrm{AIN}=-1.0 \mathrm{dBFS}, \mathrm{DCS}$ on, default SPI settings, unless otherwise noted

Parameter ${ }^{1}$	Temp	Min	Typ	Max	Unit
ANALOG INPUT FULL SCALE		2.5	2/2.5		Vp-p
SIGNAL-TO-NOISE RATIO (SNR)					
$\mathrm{f}_{\mathrm{w}}=5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.7/76.4		dBFS
$\mathrm{f}_{\mathrm{N}}=97 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.5/76.1		dBFS
$\mathrm{f}_{\mathrm{w}}=140 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.4/76.0		dBFS
$\mathrm{f}_{\mathrm{w}}=170 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	73.7	74.3/75.8		dBFS
	Full	71.5			dBFS
$\mathrm{fw}=210 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.0/75.5		dBFS
$\mathrm{ffw}_{\text {w }}=300 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		73.3/74.6		dBFS
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)					
$\mathrm{f}_{\mathrm{w}}=5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.6/76.3		dBFS
$\mathrm{f}_{\mathrm{N}}=97 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.4/76.0		dBFS
$\mathrm{f}_{\mathrm{w}}=140 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		74.4/76.0		dBFS
$\mathrm{f}_{\mathrm{w}}=170 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	72.4	74.2/75.8		dBFS
	Full	71.0			dBFS
$\mathrm{f}_{\mathrm{w}}=210 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		73.9/75.4		dBFS
fiv $=300 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		73.1/74.4		dBFS
EFFECTIVE NUMBER OF BITS (ENOB)					
$\mathrm{fiw}_{\mathrm{w}}=5 \mathrm{MHz}$ - $\mathrm{Ma}^{\text {a }}$ ($25^{\circ} \mathrm{C}$		12.1/12.4		Bits
$\mathrm{f}_{\mathrm{N}}=97 \mathrm{MHz}$ - Can oe defined different ways	$25^{\circ} \mathrm{C}$		12.1/12.3		Bits
$\mathrm{fiN}_{\mathrm{N}}=140 \mathrm{MHz}$ Only given as typical	$25^{\circ} \mathrm{C}$		12.1/12.3		Bits
$\mathrm{f}_{\mathrm{w}}=170 \mathrm{MHz}$ • Only given as typical	$25^{\circ} \mathrm{C}$		12.0/12.3		Bits
- Only specified at 25 C	Full	11.5			Bits
$\mathrm{f}_{\mathrm{w}}=210 \mathrm{MHz}$ - Only specified at 25C	$25^{\circ} \mathrm{C}$		12.0/12.2		Bits
$\mathrm{f}_{\mathrm{w}}=300 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		11.9/12.1		Bits
SPURIOUS-FREE DYNAMIC RANGE (SFDR) (IINCLUDING SECOND AIND ITIRD HARMOINIC DISTORIION)					
$\mathrm{f}_{\mathrm{w}}=5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		98/97		dBFS
$\mathrm{ffN}_{\mathrm{N}}=97 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		95/93		dBFS
$\mathrm{f}_{\mathrm{w}}=140 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		94/95		dBFS
$\mathrm{fiw}_{\mathrm{w}}=170 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	82	93/92		dBFS
	Full	82			dBFS
$\mathrm{f}_{\mathrm{w}}=210 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		93/92		dBFS
$\mathrm{f}_{\mathrm{w}}=300 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		93/90		dBFS
SFDR (INCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
$\mathrm{fiw}^{\text {a }} 5 \mathrm{MHz}$ at -2 dB Full Scale	$25^{\circ} \mathrm{C}$		100/100		dBFS
$\mathrm{f}_{\mathrm{N}}=97 \mathrm{MHz}$ at -2 dB Full Scale	$25^{\circ} \mathrm{C}$		97/97		dBFS
$\mathrm{fiw}^{\text {a }}$ 140 MHz at -2 dB Full Scale	$25^{\circ} \mathrm{C}$		100/95		dBFS
$\mathrm{f}_{\mathrm{w}}=170 \mathrm{MHz}$ at -2 dB Full Scale	$25^{\circ} \mathrm{C}$		100/100		dBFS
$\mathrm{fiw}_{\mathrm{w}}=210 \mathrm{MHz}$ at -2 dB Full Scale	$25^{\circ} \mathrm{C}$		93/93		dBFS
$\mathrm{f}_{\mathrm{wv}}=300 \mathrm{MHz}$ at -2 dB Full Scale	$25^{\circ} \mathrm{C}$		90/90		dBFS
WORST OTHER (EXCLUDING SECOND AND THIRD HARMONIC DISTORTION)					
$\mathrm{fiw}^{\text {}}=5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		98/97		dBFS
$\mathrm{f}_{\mathrm{N}}=97 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		97/93		dBFS
$\mathrm{fiw}_{\text {is }}=140 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		97/95		dBFS
$\mathrm{f}_{\mathrm{w}}=170 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	88	97/93		dBFS
	Full	82			dBFS
$\mathrm{f}_{\mathrm{W}}=210 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$		97/95		dBFS
$\mathrm{fiw}^{\text {a }}$ 300 MHz	$25^{\circ} \mathrm{C}$		97/95		dBFS

Statistical Characterization of Resistors

$$
\sigma_{\frac{R}{R_{N}}}=\frac{A_{R}}{\sqrt{W L}}=\frac{A_{R}}{\sqrt{A}}
$$

A_{R} is a process parameter

Note the normalized variance is independent of the resistor value!

Ratio Matching Effects in Data Converters

- Ratio matching is often critical in ADCs and DACs
- Accuracy and matching of gains is also critical in some data converters

String DAC Statistical Performance

$$
\begin{aligned}
\text { Recall } & \mathrm{NL}_{\mathrm{k}}=\mathrm{V}_{\text {OUT }}(\mathrm{k})-\mathrm{V}_{\mathrm{FIT}}(\mathrm{k}) \\
0 & \leq \mathrm{k} \leq \mathrm{N}-1
\end{aligned}
$$

- INL is of considerable interest
- $\operatorname{INL}=\operatorname{Max}\left(| | \mathrm{NL}_{\mathrm{k}} \mid\right), \quad 0<\mathrm{k}<\mathrm{N}-1$
- INL is difficult to characterize analytically so will focus on $\mathrm{INL}_{\mathrm{k}}$

Assume resistors are uncorrelated RVs but identically distributed, typically zero mean Gaussian

String DAC Statistical Performance

It can be shown that NL_{k} is zero-mean gaussian and

$$
\sigma_{I N L_{k}}=\sigma_{\frac{R_{R}}{R_{N}}} \sqrt{\frac{(N-k)(k-1)}{N-1}}
$$

Note this is a nice closed-form expression for the standard deviation of $\mathrm{INL}_{\mathrm{k}}$ for a string DAC !!

Observe this assumes a maximum value at about $k=N / 2$

$$
\sigma_{I N L_{k} M A X} \simeq \sigma_{\frac{R_{R}}{R_{N}}} \sqrt{\frac{\left(N-\frac{N}{2}\right)\left(\frac{N}{2}-1\right)}{N-1}} \simeq \sigma_{\frac{R_{R}}{R_{N}}} \frac{\sqrt{N}}{2}
$$

String DAC Statistical Performance

standard deviation of $\mathrm{INL}_{\mathrm{k}}$ assumes a maximum variance at mid-code

Recall INL_{k} is Gaussian and

$$
\sigma_{I N L k \max }=\sigma_{\frac{R_{R}}{R_{N O M}}} \frac{\sqrt{N}}{2}
$$

String DAC Statistical Performance

Example 1:

Assume specification for 7-bit String DAC $\left|\left|\mathrm{NL}_{\text {kmax }}\right|<1\right.$ LSB and Pelgrom matching parameter $A_{\rho}=0.1 \mu \mathrm{~m}$

Desired Yield $\quad Y=99 \%$

Determine the resistor area A to achieve this yield

Example 1:

Determine the resistor area A to achieve this yield

$$
\begin{array}{r}
\text { Define } z=N L L_{k M A X} \\
z: N\left(0 \sigma_{z}\right) \\
\sigma_{z} \simeq \sigma_{\frac{R}{R_{N}}} \bullet \frac{\sqrt{N}}{2}
\end{array}
$$

Assume f_{z} is the PDF of z

Solution strategy: Obtain σ_{z}, then solve above equation for $\sigma_{\frac{R}{R_{N}}}$ and then solve $\sigma_{\frac{R}{R_{N}}}$ for $\mathrm{A}: \quad \sigma_{\frac{R}{R_{N}}}=\frac{A_{R}}{\sqrt{W L}}=\frac{A_{R}}{\sqrt{A}}$

Example 1:

Determine the resistor area A to achieve this yield

Want to determine A so that

$$
0.99=\int_{-1 \mathrm{LSB}}^{1 \mathrm{LSB}} f_{z}(z) d z
$$

Define: $\quad z_{N}=\frac{z}{\sigma_{z}} \quad z_{N 1}=\frac{1 L S B}{\sigma_{z}}$

$$
z_{N} \sim N(0,1)
$$

Notation: pdf of z_{N} is $f_{N}\left(z_{N}\right)$

By change of variables, want

$$
0.99=\int_{-Z_{N 1}}^{z_{N 1}} f_{N}(z) d z
$$

Example 1:

Determine the resistor area A to achieve this yield

$$
\begin{aligned}
& 0.99=\int_{-z_{N 1}}^{z_{N 1}} f_{N}(z) d z \\
& 0.99=2 F_{N}\left(z_{N 1}\right)-1 \\
& F_{N}\left(z_{N 1}\right)=0.995
\end{aligned}
$$

$\mathrm{F}_{\mathrm{N}}\left(\mathrm{Z}_{\mathrm{N} 1}\right)=0.995 \quad \longrightarrow \mathrm{Z}_{\mathrm{N} 1}=2.575$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.920097	$0.9{ }^{2} 0358$	$0.9^{2} 0613$	$0.9^{2} 0863$	$0.9{ }^{2} 1106$	$0.9{ }^{2} 1344$	$0.9{ }^{2} 1576$
2.4	$0.9{ }^{2} 1802$	0.922024	$0.9{ }^{2} 2240$	$0.9{ }^{2} 2451$	$0.9^{2} 2656$	$0.9^{2} 2857$	$0.9{ }^{2} 3053$	$0.9{ }^{2} 3244$	0.029421	$0.9{ }^{2} 3613$
2.5	1..$^{2} 3790$	$0.9{ }^{2} 3963$	$0.9^{2} 4132$	$0.9^{2} 4297$	$0.9^{2} 4457$	$0.9^{2} 4614$	$0.9^{2} 4766$	$0.9^{2} 4915$	$0.9^{2} 5060$	$0.9^{2} 5201$
2.0	. $9^{2} 5339$	$0.9^{2} 5473$	$0.9^{2} 5604$	0.925731	$0.9^{2} 5855$	0.925975	$0.9{ }^{2} 6093$	$0.9^{2} 6207$	0.96319	$0.9{ }^{2} 6427$
2.7	$0.9^{2} 6533$	$0.9^{2} 6636$	$0.9^{2} 6736$	0.926833	0.9^{26928}	$0.9{ }^{27} 7020$	$0.9{ }^{27110}$	0.987197	$0.9{ }^{2} 7282$	$0.9{ }^{27} 7365$
2.8	0.927445	$0.9{ }^{\text {²7 }} 7523$	0.9^{27599}	0.927673	$0.9{ }^{27774}$	$0.9{ }^{27} 7814$	$0.9{ }^{\text {²7 }} 788$	0.97948	$0.9{ }^{2} 8012$	$0.9{ }^{2} 8074$
2.9	$0.9{ }^{2} 8134$	$0.9{ }^{2} 8193$	$0.9^{2} 8250$	0.928305	0.9^{28359}	$0.9{ }^{28411}$	$0.9{ }^{2} 8462$	$0.9{ }^{\text {2 }} 8511$	$0.9^{2} 8559$	$0.9{ }^{2} 8605$
3.0	$0.9^{2} 8650$	$0.9^{2} 8694$	$0.9^{2} 8736$	$0.9^{2} 8777$	$0.9^{2} 8817$	$0.9^{2} 8856$	$0.9{ }^{2} 8893$	$0.9{ }^{2} 8930$	$0.9{ }^{2} 8965$	$0.9^{2} 8999$

Example 1:

Determine the resistor area A to achieve this yield

$$
\begin{aligned}
& Z_{N 1}=2.575 \\
& \left.z_{\mathrm{N} 1}=\frac{1 \mathrm{LSB}}{\sigma_{\mathrm{Z}}}\right\} \\
& \sigma_{z}=0.388 \\
& \text { but } \sigma_{z}=\sigma_{\frac{R}{R_{N}}} \bullet \frac{\sqrt{N}}{2}=\frac{A_{\rho}}{\sqrt{A}} \bullet \frac{\sqrt{N}}{2} \\
& 0.388=\frac{\mathrm{A}_{\rho}}{\sqrt{\mathrm{A}}} \bullet \frac{\sqrt{\mathrm{~N}}}{2} \\
& N=127 \text { and } A_{\rho}=0.1 \mu \mathrm{~m}
\end{aligned}
$$

Solving, obtain

$$
A=2.13 \mu \mathrm{~m}^{2} \quad \frac{\sigma_{R}}{\frac{R}{R_{N}}}=0.0685
$$

Example 2: Consider an 8-bit DAC obtained by combining 2 of the 7 -bit DACs

Determine the yield if the specification is still $\quad\left|\mathrm{NL}_{\text {kMax }}\right|<1$ LSB

Define $z=I N L_{k M A X}$

$$
\sigma_{z}=\sigma_{\frac{R}{R_{N}}} \cdot \frac{\sqrt{N}}{2}
$$

Since same resistors are used,

$$
\sigma_{\frac{R}{R_{N}}}=0.0685
$$

$$
\sigma_{z}=0.0685 \cdot \frac{\sqrt{256}}{2}=0.5488
$$

$$
Y=\int_{-1 L S B}^{1 L S B} f_{z}(z) d z
$$

Example 2: Consider an 8-bit DAC obtained by combining 2 of the 7 -bit DACs

Determine the yield if the specification is still $\quad\left|\mathrm{NL}_{\text {kMax }}\right|<1$ LSB

$$
\begin{array}{r}
Y=\int_{-1 L S B}^{1 L S B} f_{z}(z) d z \\
\text { Define } z_{N}=\frac{z}{\sigma_{z}} \\
Z_{N}=\frac{1 L S B}{0.5488}=1.822 \\
Y=2 F_{N}(1.822)-1
\end{array}
$$

$F(0.822)=0.9656$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	¢. 96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	8.97957	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.920097	$0.92{ }^{2} 0358$	$0.9{ }^{2} 0613$	$0.9{ }^{2} 0863$	$0.9{ }^{2} 1106$	$0.9{ }^{2} 1344$	$0.9{ }^{2} 1576$
2.4	$0.9{ }^{2} 1802$	$0.9^{2} 2024$	$0.9{ }^{2} 2240$	0.922451	$0.9^{2} 2656$	$0.9^{2} 2857$	$0.9{ }^{2} 3053$	0.923244	$0.9{ }^{23} 3431$	$0.9{ }^{2} 3613$
2.5	$0.9^{2} 3790$	$0.9{ }^{2} 3963$	$0.9^{2} 4132$	$0.99^{2} 4297$	$0.9^{2} 4457$	$0.9{ }^{2} 4614$	$0.9{ }^{2} 4766$	0.924915	$0.9{ }^{2} 5060$	$0.9^{2} 5201$
2.6	0.925339	0.925473	0.925604	0.925731	0.925855	0.925975	$0.9{ }^{2} 6093$	$0.9{ }^{2} 6207$	0.926319	$0.9^{2} 6427$
2.7	$0.9{ }^{2} 6533$	0.926636	$0.9{ }^{26736}$	$0.9{ }^{2} 6833$	0.9^{26928}	$0.9{ }^{27} 7020$	$0.9{ }^{2} 7110$	0.987197	$0.9{ }^{27} 7282$	$0.9^{2} 7365$
2.8	0.927445	$0.9{ }^{27} 7523$	0.9^{27599}	0.927673	$0.9{ }^{27774}$	$0.9{ }^{27} 7814$	$0.9{ }^{27} 7882$	0.97948	0.928012	$0.9^{2} 8074$
2.9	0.928134	0.928193	$0.9{ }^{2} 8250$	0.988305	0.9^{28359}	$0.9{ }^{2} 8411$	$0.9{ }^{2} 8462$	0.9^{28511}	0.9^{28559}	$0.9^{2} 8605$
3.0	$0.9^{2} 8650$	$0.9^{2} 8694$	$0.9{ }^{2} 8736$	0.928777	$0.9^{2} 8817$	$0.9{ }^{2} 8856$	$0.9{ }^{2} 8893$	$0.9{ }^{2} 8930$	0.928965	$0.9^{2} 8999$

Example 2:

Consider an 8-bit DAC obtained by combining 2 of the 7 -bit DACs

$$
\begin{aligned}
& Y=2 F_{N}(1.822)-1 \\
& Y=2 \cdot 0.965-1=0.93
\end{aligned}
$$

Yield has dropped from 99\% to 93\%

Example 3: What area is needed for obtaining a 99\% yield for an 8-bit string DAC and how does that compare to the area required for a 7 -bit DAC with the same yield?
For 99\% yield

$$
\begin{aligned}
& \sigma_{z}=\sigma_{R} \cdot \frac{\sqrt{N}}{R_{N}}=\frac{A_{\rho}}{\sqrt{A}} \bullet \frac{\sqrt{N}}{2}=0.388 \\
& \frac{A_{\rho}}{\sqrt{A}} \cdot \frac{\sqrt{N}}{2}=0.388 \\
& A_{\rho}=0.1 \mu \mathrm{~m} \quad N=256 \\
& A=4.25 \mu \mathrm{~m}^{2}
\end{aligned}
$$

Area doubled because there are twice as many resistors and each is approximately twice as big so by adding 1 -bit of resolution, the area went up by approximately a factor of 4

String DAC Statistical Performance

How about statistics for the INL?

$$
\begin{gathered}
\mathrm{INL}=\max _{1<\mathrm{k} \mathrm{~N}}\left|\mathrm{NL}_{\mathrm{k}}\right| \\
\mathrm{INL}_{\mathrm{k}}=\frac{1}{R_{\text {NOM }}}\left[\sum_{j=1}^{k} R_{R j}\left(1-\frac{k}{N-1}\right)-\frac{k}{N-1} \sum_{j=k+1}^{N-1} R_{R j}\right] \quad 1 \leq k \leq N-1
\end{gathered}
$$

- INL is an order statistic
- Distribution functions for order statistics are very complicated and closed form solutions do not exist !
- INL is not zero-mean and not Gaussian
- Statistical simulations using Monte-Carlo analysis often used to predict INL yield but these simulations can be extremely time consuming if the order of the data converter is very large

How important is statistical analysis?

- Statistical analysis of data converters is critical
- Some architectures are more sensitive than others to statistical variations in components
- The onset of yield loss due to statistical limitations is generally quite abrupt and can have disastrous effects if not considered as part of the design process

$$
\text { Recall examples where } \sigma_{\mathrm{vos}}=5 \mathrm{mV} \text { compared with } \sigma_{\mathrm{vos}}=1 \mathrm{mV}
$$

- Substantially over-designing to avoid concerns about statistical yield loss is not a practical solution since the area penalty, the speed penalty, and the power penalty are generally quite severe

For the effects of local random variations of a parameter X , generally

$$
\sigma_{X} \propto \frac{\mathrm{~A}_{0}}{\sqrt{\mathrm{~A}_{\mathrm{C}}}}
$$

where A_{C} is the area of the matching critical components and A_{0} is a process parameter

Stay Safe and Stay Healthy !

End of Lecture 38

